Références :
[1]: IMO, https://www.imo.org/en/MediaCentre/PressBriefings/pages/02-IMO-2020.aspx
[2]: Schmidt, G. (2024). World view. Nature, 627, 467, https://ntrs.nasa.gov/api/citations/20240004066/downloads/GSchmidtNatureWhyReprint.pdf
[3]: Stenchikov, G., Ukhov, A., & Osipov, S. (2024). Modeling of Instantaneous and Adjusted Radiative Forcing of the 2022 Hunga Volcano Explosion (No. EGU24-2141). Copernicus Meetings.
[4]: Vömel, H., Evan, S., & Tully, M. (2022). Water vapor injection into the stratosphere by Hunga Tonga-Hunga Ha’apai. Science, 377(6613), 1444-1447.
[5]: Schoeberl, M. R., Wang, Y., Ueyama, R., Taha, G., Jensen, E., & Yu, W. (2022). Analysis and impact of the Hunga Tonga‐Hunga Ha'apai stratospheric water vapor plume. Geophysical Research Letters, 49(20), e2022GL100248.
[6]: Jucker, M., Lucas, C., & Dutta, D. (2023). Long-term climate impact of large stratospheric water vapor perturbations. Authorea Preprints.
[7]: Nedoluha, G. E., Gomez, R. M., Boyd, I., Neal, H., Allen, D. R., & Lambert, A. (2024). The Spread of the Hunga Tonga H2O Plume in the Middle Atmosphere Over the First Two Years Since Eruption. Authorea Preprints.
[8]: Millan, L., Santee, M. L., Lambert, A., Livesey, N. J., Werner, F., Schwartz, M. J., Pumphrey, H.C., Manney, G.L., Wang, Y., Su, H., Wu, L., Read, W.G., & Froidevaux, L. (2022). The Hunga Tonga‐Hunga Ha'apai hydration of the stratosphere. Geophysical Research Letters, 49(13), e2022GL099381.
[9]: Amdur, T., Stine, A. R., & Huybers, P. (2021). Global surface temperature response to 11-yr solar cycle forcing consistent with general circulation model results. Journal of Climate, 34(8), 2893-2903.
[10]: Total and Spectral Solar Irradiance Sensor TSIS-1 Data, last accessed: 27.05.2024, https://lasp.colorado.edu/lisird/data/tsis_tsi_24hr
[11]: Hobday, A. J., Burrows, M. T., Filbee-Dexter, K., Holbrook, N. J., Sen Gupta, A., Smale, D. A., Kathryn, E.S., Thomsen, M.S., & Wernberg, T. (2023). With the arrival of El Niño, prepare for stronger marine heatwaves. Nature, 621(7977), 38-41.
[12]: Menary, M., & Hermanson, L. (2024). Global surface ocean temperature anomalies in 2023 and their climate context (No. EGU24-5681). Copernicus Meetings.
[13]: Jiang, N., Zhu, C., Hu, Z. Z., McPhaden, M. J., Chen, D., Liu, B., Shuangmei, M., Yan, Y., Zhou, T., Qian, W., Luo, J., Yang, X., Lio, F. & Zhu, Y. (2024). Enhanced risk of record-breaking regional temperatures during the 2023–24 El Niño. Scientific Reports, 14(1), 2521.
[14]: Schumacher, D. L., Singh, J., Hauser, M., Fischer, E. M., Wild, M., & Seneviratne, S. I. (2024). Exacerbated summer European warming not captured by climate models neglecting long-term aerosol changes. Communications Earth & Environment, 5(1), 182.
[15]: Yuan, T., Song, H., Oreopoulos, L., Wood, R., Bian, H., Breen, K., Chin, M., Yu, H., Barahona, D., Meyer, K. & Platnick, S. (2024). Abrupt reduction in shipping emission as an inadvertent geoengineering termination shock produces substantial radiative warming. Communications Earth & Environment, 5(1), 281.
[16]: Hausfather, Z. (2024). A problematic estimate of warming from low-sulfur marine fuels. The Clmate Brink, last accessed: 03.06.2024, https://www.theclimatebrink.com/p/a-problematic-estimate-of-warming